일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | ||||
4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 |
18 | 19 | 20 | 21 | 22 | 23 | 24 |
25 | 26 | 27 | 28 | 29 | 30 | 31 |
- Python
- 텐서플로우
- resnet
- 컴퓨터비전
- 코딩테스트
- 딥러닝
- 빅데이터분석기사
- 의학통계
- 데이터사이언스
- 파이썬
- 빅분기실기
- AI
- 빅분기
- 인공지능
- 데이터분석가
- mnist
- 데이터EDA
- 통계
- machinelearning
- 머신러닝
- Keras
- CNN
- 데이터모델링
- 데이터분석
- ComputerVision
- 케라스
- TensorFlow
- Deeplearning
- 데이터전처리
- 의학논문
- Today
- Total
목록machinelearning (2)
Be Brave, Be Humble

Sequential API In [ ]: import tensorflow as tf from tensorflow.keras.models import Sequential, Model from tensorflow.keras.layers import Input, Dense, Flatten from tensorflow.keras.optimizers import SGD import numpy as np In [ ]: # Data load data = np.loadtxt('./TF2_Example_1.csv', delimiter=',', dtype=np.float32) print(data, data.shape) [[ 1. 2. 0. -4.] [ 5. 4. 3. 4.] [ 1. 2. -1. -6.] [ 3. 1. 0..
This repo is an AI intermediate course-level curriculum. In the beginning, It directly implements algorithms of Machine Learning and Deep Learning. ex) Understanding and implementing algorithms for linear regression / logistic regression / loss function / gradient descent In the middle section deals with the deep learning architecture and feed-forward and learn the deep learning framework using ..