일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | ||||
4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 |
18 | 19 | 20 | 21 | 22 | 23 | 24 |
25 | 26 | 27 | 28 | 29 | 30 | 31 |
Tags
- Deeplearning
- 케라스
- 데이터분석
- 데이터전처리
- Python
- 데이터사이언스
- 데이터EDA
- 데이터모델링
- 의학논문
- 텐서플로우
- 빅데이터분석기사
- 통계
- 딥러닝
- 파이썬
- 데이터분석가
- 코딩테스트
- Keras
- 컴퓨터비전
- CNN
- machinelearning
- 의학통계
- ComputerVision
- resnet
- 인공지능
- AI
- 빅분기
- 빅분기실기
- 머신러닝
- TensorFlow
- mnist
- Today
- Total
Be Brave, Be Humble
04_kaggle_diabetes_data 본문

[1] 데이터 로드 및 기본 정보 확인
In [ ]:
import matplotlib
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('./kaggle_diabetes.csv')
In [ ]:
df.head()
Out[ ]:
PregnanciesGlucoseBloodPressureSkinThicknessInsulinBMIDiabetesPedigreeFunctionAgeOutcome01234
6 | 148 | 72 | 35 | 0 | 33.6 | 0.627 | 50 | 1 |
1 | 85 | 66 | 29 | 0 | 26.6 | 0.351 | 31 | 0 |
8 | 183 | 64 | 0 | 0 | 23.3 | 0.672 | 32 | 1 |
1 | 89 | 66 | 23 | 94 | 28.1 | 0.167 | 21 | 0 |
0 | 137 | 40 | 35 | 168 | 43.1 | 2.288 | 33 | 1 |
In [ ]:
# 전체 Histogram
df.hist()
plt.tight_layout()
plt.show()

In [ ]:
# 개별 histogram
df['BloodPressure'].hist()
plt.tight_layout()
plt.show()

In [ ]:
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 Pregnancies 768 non-null int64
1 Glucose 768 non-null int64
2 BloodPressure 768 non-null int64
3 SkinThickness 768 non-null int64
4 Insulin 768 non-null int64
5 BMI 768 non-null float64
6 DiabetesPedigreeFunction 768 non-null float64
7 Age 768 non-null int64
8 Outcome 768 non-null int64
dtypes: float64(2), int64(7)
memory usage: 54.1 KB
In [ ]:
df.describe()
Out[ ]:
PregnanciesGlucoseBloodPressureSkinThicknessInsulinBMIDiabetesPedigreeFunctionAgeOutcomecountmeanstdmin25%50%75%max
768.000000 | 768.000000 | 768.000000 | 768.000000 | 768.000000 | 768.000000 | 768.000000 | 768.000000 | 768.000000 |
3.845052 | 120.894531 | 69.105469 | 20.536458 | 79.799479 | 31.992578 | 0.471876 | 33.240885 | 0.348958 |
3.369578 | 31.972618 | 19.355807 | 15.952218 | 115.244002 | 7.884160 | 0.331329 | 11.760232 | 0.476951 |
0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.078000 | 21.000000 | 0.000000 |
1.000000 | 99.000000 | 62.000000 | 0.000000 | 0.000000 | 27.300000 | 0.243750 | 24.000000 | 0.000000 |
3.000000 | 117.000000 | 72.000000 | 23.000000 | 30.500000 | 32.000000 | 0.372500 | 29.000000 | 0.000000 |
6.000000 | 140.250000 | 80.000000 | 32.000000 | 127.250000 | 36.600000 | 0.626250 | 41.000000 | 1.000000 |
17.000000 | 199.000000 | 122.000000 | 99.000000 | 846.000000 | 67.100000 | 2.420000 | 81.000000 | 1.000000 |
[2] 데이터 전처리
In [ ]:
# missing value 확인
df.isnull().sum()
Out[ ]:
Pregnancies 0
Glucose 0
BloodPressure 0
SkinThickness 0
Insulin 0
BMI 0
DiabetesPedigreeFunction 0
Age 0
Outcome 0
dtype: int64
In [ ]:
# 데이터 0인 값 개수 확인
for col in df.columns:
missing_rows = df.loc[df[col]==0].shape[0]
print(col + ": " + str(missing_rows))
Pregnancies: 111
Glucose: 5
BloodPressure: 35
SkinThickness: 227
Insulin: 374
BMI: 11
DiabetesPedigreeFunction: 0
Age: 0
Outcome: 500
In [ ]:
import numpy as np
# outlier 처리
df['Glucose'] = df['Glucose'].replace(0, np.nan)
df['BloodPressure'] = df['BloodPressure'].replace(0, np.nan)
df['SkinThickness'] = df['SkinThickness'].replace(0, np.nan)
df['Insulin'] = df['Insulin'].replace(0, np.nan)
df['BMI'] = df['BMI'].replace(0, np.nan)
# missing value 처리
df['Glucose'] = df['Glucose'].fillna(df['Glucose'].mean())
df['BloodPressure'] = df['BloodPressure'].fillna(df['BloodPressure'].mean())
df['SkinThickness'] = df['SkinThickness'].fillna(df['SkinThickness'].mean())
df['Insulin'] = df['Insulin'].fillna(df['Insulin'].mean())
df['BMI'] = df['BMI'].fillna(df['BMI'].mean())
In [ ]:
for col in df.columns:
missing_rows = df.loc[df[col] == 0].shape[0]
print(col + ": " + str(missing_rows))
Pregnancies: 111
Glucose: 0
BloodPressure: 0
SkinThickness: 0
Insulin: 0
BMI: 0
DiabetesPedigreeFunction: 0
Age: 0
Outcome: 500
In [ ]:
df.columns
Out[ ]:
Index(['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin',
'BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome'],
dtype='object')
In [ ]:
df_scaled = df.copy() # 원본 DataFrame 보존
In [ ]:
## feature column, label column 추출 후 DF 생성
feature_df = df_scaled[df_scaled.columns.difference(['Outcome'])] # outcome 제외한 df
label_df = df_scaled['Outcome']
print(feature_df.shape, label_df.shape)
(768, 8) (768,)
In [ ]:
# 스케일링
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
df_std = scaler.fit_transform(feature_df)
print(type(df_std))
df_std = pd.DataFrame(df_std, columns = feature_df.columns)
<class 'numpy.ndarray'>
In [ ]:
# pandas <=> numpy
feature_np = df_std.to_numpy().astype('float32')
label_np = label_df.to_numpy().astype('float32')
print(feature_np.shape, label_np.shape)
(768, 8) (768,)
[3] 머신러닝/딥러닝
In [ ]:
s = np.arange(len(feature_np))
np.random.shuffle(s)
feature_np = feature_np[s]
label_np = label_np[s]
In [ ]:
split = 0.15
test_num = int(split*len(label_np))
x_test = feature_np[0:test_num]
y_test = label_np[0:test_num]
x_train = feature_np[test_num:]
y_train = label_np[test_num:]
print(x_test.shape, y_test.shape, x_train.shape, y_train.shape)
(115, 8) (115,) (653, 8) (653,)
In [ ]:
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout
from tensorflow.keras.optimizers import SGD, Adam
model = Sequential()
model.add(Dense(4, activation = 'relu', input_shape = (8,) ))
model.add(Dense(1, activation = 'sigmoid', input_shape = (32,) ))
In [ ]:
model.compile(optimizer= SGD(learning_rate=1e-3), loss='binary_crossentropy', metrics=['accuracy'])
In [ ]:
from datetime import datetime
start_time = datetime.now()
hist = model.fit(x_train, y_train, epochs=400, validation_data=(x_test, y_test))
end_time = datetime.now()
print('\nElapsed time => ', end_time - start_time)
Epoch 1/400
21/21 [==============================] - 1s 10ms/step - loss: 0.6938 - accuracy: 0.5513 - val_loss: 0.7018 - val_accuracy: 0.5652
Epoch 2/400
21/21 [==============================] - 0s 3ms/step - loss: 0.6906 - accuracy: 0.5528 - val_loss: 0.6991 - val_accuracy: 0.5652
Epoch 3/400
21/21 [==============================] - 0s 3ms/step - loss: 0.6875 - accuracy: 0.5528 - val_loss: 0.6965 - val_accuracy: 0.5652
Epoch 4/400
21/21 [==============================] - 0s 3ms/step - loss: 0.6846 - accuracy: 0.5559 - val_loss: 0.6941 - val_accuracy: 0.5739
Epoch 5/400
21/21 [==============================] - 0s 4ms/step - loss: 0.6818 - accuracy: 0.5559 - val_loss: 0.6917 - val_accuracy: 0.5652
Epoch 6/400
21/21 [==============================] - 0s 4ms/step - loss: 0.6791 - accuracy: 0.5605 - val_loss: 0.6893 - val_accuracy: 0.5652
Epoch 7/400
21/21 [==============================] - 0s 3ms/step - loss: 0.6763 - accuracy: 0.5651 - val_loss: 0.6870 - val_accuracy: 0.5652
Epoch 8/400
21/21 [==============================] - 0s 3ms/step - loss: 0.6737 - accuracy: 0.5666 - val_loss: 0.6847 - val_accuracy: 0.5652
Epoch 9/400
21/21 [==============================] - 0s 3ms/step - loss: 0.6711 - accuracy: 0.5666 - val_loss: 0.6825 - val_accuracy: 0.5652
Epoch 10/400
21/21 [==============================] - 0s 3ms/step - loss: 0.6685 - accuracy: 0.5697 - val_loss: 0.6804 - val_accuracy: 0.5652
Epoch 11/400
21/21 [==============================] - 0s 3ms/step - loss: 0.6661 - accuracy: 0.5727 - val_loss: 0.6783 - val_accuracy: 0.5652
Epoch 12/400
21/21 [==============================] - 0s 3ms/step - loss: 0.6637 - accuracy: 0.5697 - val_loss: 0.6763 - val_accuracy: 0.5652
Epoch 13/400
21/21 [==============================] - 0s 3ms/step - loss: 0.6614 - accuracy: 0.5712 - val_loss: 0.6743 - val_accuracy: 0.5652
Epoch 14/400
21/21 [==============================] - 0s 3ms/step - loss: 0.6590 - accuracy: 0.5712 - val_loss: 0.6723 - val_accuracy: 0.5826
Epoch 15/400
21/21 [==============================] - 0s 3ms/step - loss: 0.6568 - accuracy: 0.5712 - val_loss: 0.6704 - val_accuracy: 0.5826
Epoch 16/400
21/21 [==============================] - 0s 3ms/step - loss: 0.6546 - accuracy: 0.5758 - val_loss: 0.6686 - val_accuracy: 0.5826
Epoch 17/400
21/21 [==============================] - 0s 3ms/step - loss: 0.6525 - accuracy: 0.5835 - val_loss: 0.6668 - val_accuracy: 0.5913
Epoch 18/400
21/21 [==============================] - 0s 3ms/step - loss: 0.6504 - accuracy: 0.5835 - val_loss: 0.6651 - val_accuracy: 0.5826
Epoch 19/400
21/21 [==============================] - 0s 4ms/step - loss: 0.6483 - accuracy: 0.5865 - val_loss: 0.6633 - val_accuracy: 0.5826
Epoch 20/400
21/21 [==============================] - 0s 4ms/step - loss: 0.6463 - accuracy: 0.5865 - val_loss: 0.6617 - val_accuracy: 0.5913
Epoch 21/400
21/21 [==============================] - 0s 3ms/step - loss: 0.6444 - accuracy: 0.5911 - val_loss: 0.6601 - val_accuracy: 0.6000
Epoch 22/400
21/21 [==============================] - 0s 3ms/step - loss: 0.6425 - accuracy: 0.5957 - val_loss: 0.6585 - val_accuracy: 0.6000
Epoch 23/400
21/21 [==============================] - 0s 3ms/step - loss: 0.6407 - accuracy: 0.5957 - val_loss: 0.6569 - val_accuracy: 0.6000
Epoch 24/400
21/21 [==============================] - 0s 3ms/step - loss: 0.6388 - accuracy: 0.5972 - val_loss: 0.6554 - val_accuracy: 0.6000
Epoch 25/400
21/21 [==============================] - 0s 3ms/step - loss: 0.6371 - accuracy: 0.5926 - val_loss: 0.6540 - val_accuracy: 0.6087
Epoch 26/400
21/21 [==============================] - 0s 3ms/step - loss: 0.6353 - accuracy: 0.5911 - val_loss: 0.6525 - val_accuracy: 0.6087
Epoch 27/400
21/21 [==============================] - 0s 3ms/step - loss: 0.6337 - accuracy: 0.5957 - val_loss: 0.6512 - val_accuracy: 0.6087
Epoch 28/400
21/21 [==============================] - 0s 4ms/step - loss: 0.6320 - accuracy: 0.5988 - val_loss: 0.6498 - val_accuracy: 0.6087
Epoch 29/400
21/21 [==============================] - 0s 2ms/step - loss: 0.6304 - accuracy: 0.6018 - val_loss: 0.6485 - val_accuracy: 0.6087
Epoch 30/400
21/21 [==============================] - 0s 3ms/step - loss: 0.6288 - accuracy: 0.6064 - val_loss: 0.6472 - val_accuracy: 0.6174
Epoch 31/400
21/21 [==============================] - 0s 3ms/step - loss: 0.6272 - accuracy: 0.6064 - val_loss: 0.6459 - val_accuracy: 0.6174
Epoch 32/400
21/21 [==============================] - 0s 3ms/step - loss: 0.6257 - accuracy: 0.6080 - val_loss: 0.6446 - val_accuracy: 0.6174
Epoch 33/400
21/21 [==============================] - 0s 2ms/step - loss: 0.6242 - accuracy: 0.6064 - val_loss: 0.6434 - val_accuracy: 0.6174
Epoch 34/400
21/21 [==============================] - 0s 3ms/step - loss: 0.6227 - accuracy: 0.6064 - val_loss: 0.6422 - val_accuracy: 0.6261
Epoch 35/400
21/21 [==============================] - 0s 3ms/step - loss: 0.6212 - accuracy: 0.6080 - val_loss: 0.6410 - val_accuracy: 0.6261
Epoch 36/400
21/21 [==============================] - 0s 3ms/step - loss: 0.6198 - accuracy: 0.6110 - val_loss: 0.6398 - val_accuracy: 0.6261
Epoch 37/400
21/21 [==============================] - 0s 3ms/step - loss: 0.6184 - accuracy: 0.6110 - val_loss: 0.6387 - val_accuracy: 0.6087
Epoch 38/400
21/21 [==============================] - 0s 3ms/step - loss: 0.6170 - accuracy: 0.6110 - val_loss: 0.6376 - val_accuracy: 0.6087
Epoch 39/400
21/21 [==============================] - 0s 3ms/step - loss: 0.6157 - accuracy: 0.6095 - val_loss: 0.6365 - val_accuracy: 0.6087
Epoch 40/400
21/21 [==============================] - 0s 4ms/step - loss: 0.6144 - accuracy: 0.6110 - val_loss: 0.6354 - val_accuracy: 0.6174
Epoch 41/400
21/21 [==============================] - 0s 3ms/step - loss: 0.6131 - accuracy: 0.6126 - val_loss: 0.6343 - val_accuracy: 0.6261
Epoch 42/400
21/21 [==============================] - 0s 3ms/step - loss: 0.6118 - accuracy: 0.6141 - val_loss: 0.6333 - val_accuracy: 0.6261
Epoch 43/400
21/21 [==============================] - 0s 4ms/step - loss: 0.6105 - accuracy: 0.6141 - val_loss: 0.6322 - val_accuracy: 0.6261
Epoch 44/400
21/21 [==============================] - 0s 3ms/step - loss: 0.6093 - accuracy: 0.6141 - val_loss: 0.6312 - val_accuracy: 0.6261
Epoch 45/400
21/21 [==============================] - 0s 4ms/step - loss: 0.6081 - accuracy: 0.6156 - val_loss: 0.6303 - val_accuracy: 0.6261
Epoch 46/400
21/21 [==============================] - 0s 4ms/step - loss: 0.6069 - accuracy: 0.6172 - val_loss: 0.6293 - val_accuracy: 0.6261
Epoch 47/400
21/21 [==============================] - 0s 3ms/step - loss: 0.6057 - accuracy: 0.6187 - val_loss: 0.6283 - val_accuracy: 0.6174
Epoch 48/400
21/21 [==============================] - 0s 3ms/step - loss: 0.6044 - accuracy: 0.6187 - val_loss: 0.6273 - val_accuracy: 0.6174
Epoch 49/400
21/21 [==============================] - 0s 3ms/step - loss: 0.6033 - accuracy: 0.6172 - val_loss: 0.6264 - val_accuracy: 0.6261
Epoch 50/400
21/21 [==============================] - 0s 3ms/step - loss: 0.6021 - accuracy: 0.6202 - val_loss: 0.6255 - val_accuracy: 0.6261
Epoch 51/400
21/21 [==============================] - 0s 3ms/step - loss: 0.6009 - accuracy: 0.6233 - val_loss: 0.6246 - val_accuracy: 0.6261
Epoch 52/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5999 - accuracy: 0.6248 - val_loss: 0.6237 - val_accuracy: 0.6261
Epoch 53/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5988 - accuracy: 0.6263 - val_loss: 0.6228 - val_accuracy: 0.6261
Epoch 54/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5977 - accuracy: 0.6263 - val_loss: 0.6219 - val_accuracy: 0.6261
Epoch 55/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5966 - accuracy: 0.6263 - val_loss: 0.6211 - val_accuracy: 0.6174
Epoch 56/400
21/21 [==============================] - 0s 2ms/step - loss: 0.5956 - accuracy: 0.6263 - val_loss: 0.6202 - val_accuracy: 0.6174
Epoch 57/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5946 - accuracy: 0.6325 - val_loss: 0.6194 - val_accuracy: 0.6174
Epoch 58/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5936 - accuracy: 0.6325 - val_loss: 0.6186 - val_accuracy: 0.6174
Epoch 59/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5926 - accuracy: 0.6325 - val_loss: 0.6178 - val_accuracy: 0.6174
Epoch 60/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5916 - accuracy: 0.6340 - val_loss: 0.6170 - val_accuracy: 0.6174
Epoch 61/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5907 - accuracy: 0.6355 - val_loss: 0.6162 - val_accuracy: 0.6174
Epoch 62/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5897 - accuracy: 0.6371 - val_loss: 0.6154 - val_accuracy: 0.6174
Epoch 63/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5888 - accuracy: 0.6386 - val_loss: 0.6147 - val_accuracy: 0.6087
Epoch 64/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5879 - accuracy: 0.6401 - val_loss: 0.6139 - val_accuracy: 0.6087
Epoch 65/400
21/21 [==============================] - 0s 2ms/step - loss: 0.5870 - accuracy: 0.6478 - val_loss: 0.6132 - val_accuracy: 0.6087
Epoch 66/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5861 - accuracy: 0.6493 - val_loss: 0.6125 - val_accuracy: 0.6087
Epoch 67/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5853 - accuracy: 0.6493 - val_loss: 0.6117 - val_accuracy: 0.6087
Epoch 68/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5844 - accuracy: 0.6508 - val_loss: 0.6111 - val_accuracy: 0.6087
Epoch 69/400
21/21 [==============================] - 0s 2ms/step - loss: 0.5836 - accuracy: 0.6524 - val_loss: 0.6104 - val_accuracy: 0.6087
Epoch 70/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5827 - accuracy: 0.6570 - val_loss: 0.6097 - val_accuracy: 0.6087
Epoch 71/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5819 - accuracy: 0.6570 - val_loss: 0.6090 - val_accuracy: 0.6087
Epoch 72/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5811 - accuracy: 0.6600 - val_loss: 0.6084 - val_accuracy: 0.6087
Epoch 73/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5803 - accuracy: 0.6570 - val_loss: 0.6077 - val_accuracy: 0.6087
Epoch 74/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5796 - accuracy: 0.6600 - val_loss: 0.6070 - val_accuracy: 0.6087
Epoch 75/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5788 - accuracy: 0.6631 - val_loss: 0.6064 - val_accuracy: 0.6087
Epoch 76/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5780 - accuracy: 0.6616 - val_loss: 0.6058 - val_accuracy: 0.6087
Epoch 77/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5773 - accuracy: 0.6662 - val_loss: 0.6052 - val_accuracy: 0.6174
Epoch 78/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5765 - accuracy: 0.6662 - val_loss: 0.6045 - val_accuracy: 0.6261
Epoch 79/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5758 - accuracy: 0.6662 - val_loss: 0.6039 - val_accuracy: 0.6261
Epoch 80/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5751 - accuracy: 0.6692 - val_loss: 0.6033 - val_accuracy: 0.6261
Epoch 81/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5744 - accuracy: 0.6708 - val_loss: 0.6026 - val_accuracy: 0.6261
Epoch 82/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5737 - accuracy: 0.6738 - val_loss: 0.6021 - val_accuracy: 0.6261
Epoch 83/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5730 - accuracy: 0.6738 - val_loss: 0.6015 - val_accuracy: 0.6261
Epoch 84/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5724 - accuracy: 0.6738 - val_loss: 0.6009 - val_accuracy: 0.6261
Epoch 85/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5717 - accuracy: 0.6738 - val_loss: 0.6004 - val_accuracy: 0.6261
Epoch 86/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5711 - accuracy: 0.6738 - val_loss: 0.5998 - val_accuracy: 0.6261
Epoch 87/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5705 - accuracy: 0.6753 - val_loss: 0.5993 - val_accuracy: 0.6261
Epoch 88/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5698 - accuracy: 0.6815 - val_loss: 0.5987 - val_accuracy: 0.6261
Epoch 89/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5692 - accuracy: 0.6784 - val_loss: 0.5982 - val_accuracy: 0.6261
Epoch 90/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5686 - accuracy: 0.6799 - val_loss: 0.5977 - val_accuracy: 0.6261
Epoch 91/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5680 - accuracy: 0.6784 - val_loss: 0.5971 - val_accuracy: 0.6261
Epoch 92/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5673 - accuracy: 0.6830 - val_loss: 0.5966 - val_accuracy: 0.6261
Epoch 93/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5668 - accuracy: 0.6815 - val_loss: 0.5961 - val_accuracy: 0.6261
Epoch 94/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5662 - accuracy: 0.6830 - val_loss: 0.5956 - val_accuracy: 0.6261
Epoch 95/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5656 - accuracy: 0.6861 - val_loss: 0.5951 - val_accuracy: 0.6261
Epoch 96/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5650 - accuracy: 0.6876 - val_loss: 0.5946 - val_accuracy: 0.6261
Epoch 97/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5644 - accuracy: 0.6907 - val_loss: 0.5941 - val_accuracy: 0.6348
Epoch 98/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5639 - accuracy: 0.6922 - val_loss: 0.5936 - val_accuracy: 0.6348
Epoch 99/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5633 - accuracy: 0.6922 - val_loss: 0.5931 - val_accuracy: 0.6348
Epoch 100/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5627 - accuracy: 0.6922 - val_loss: 0.5926 - val_accuracy: 0.6348
Epoch 101/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5622 - accuracy: 0.6937 - val_loss: 0.5921 - val_accuracy: 0.6348
Epoch 102/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5616 - accuracy: 0.6937 - val_loss: 0.5917 - val_accuracy: 0.6261
Epoch 103/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5611 - accuracy: 0.6937 - val_loss: 0.5912 - val_accuracy: 0.6174
Epoch 104/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5605 - accuracy: 0.6937 - val_loss: 0.5907 - val_accuracy: 0.6174
Epoch 105/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5599 - accuracy: 0.6937 - val_loss: 0.5902 - val_accuracy: 0.6174
Epoch 106/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5594 - accuracy: 0.6953 - val_loss: 0.5897 - val_accuracy: 0.6174
Epoch 107/400
21/21 [==============================] - 0s 2ms/step - loss: 0.5588 - accuracy: 0.6968 - val_loss: 0.5893 - val_accuracy: 0.6174
Epoch 108/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5583 - accuracy: 0.6953 - val_loss: 0.5888 - val_accuracy: 0.6174
Epoch 109/400
21/21 [==============================] - 0s 2ms/step - loss: 0.5578 - accuracy: 0.6937 - val_loss: 0.5883 - val_accuracy: 0.6174
Epoch 110/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5572 - accuracy: 0.6937 - val_loss: 0.5879 - val_accuracy: 0.6174
Epoch 111/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5567 - accuracy: 0.6922 - val_loss: 0.5874 - val_accuracy: 0.6174
Epoch 112/400
21/21 [==============================] - 0s 2ms/step - loss: 0.5562 - accuracy: 0.6937 - val_loss: 0.5870 - val_accuracy: 0.6174
Epoch 113/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5557 - accuracy: 0.6937 - val_loss: 0.5865 - val_accuracy: 0.6174
Epoch 114/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5552 - accuracy: 0.6953 - val_loss: 0.5861 - val_accuracy: 0.6174
Epoch 115/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5547 - accuracy: 0.6953 - val_loss: 0.5856 - val_accuracy: 0.6174
Epoch 116/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5543 - accuracy: 0.6953 - val_loss: 0.5852 - val_accuracy: 0.6174
Epoch 117/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5538 - accuracy: 0.6953 - val_loss: 0.5848 - val_accuracy: 0.6174
Epoch 118/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5533 - accuracy: 0.6953 - val_loss: 0.5844 - val_accuracy: 0.6261
Epoch 119/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5528 - accuracy: 0.6937 - val_loss: 0.5839 - val_accuracy: 0.6261
Epoch 120/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5524 - accuracy: 0.6953 - val_loss: 0.5835 - val_accuracy: 0.6261
Epoch 121/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5520 - accuracy: 0.6968 - val_loss: 0.5831 - val_accuracy: 0.6174
Epoch 122/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5515 - accuracy: 0.6983 - val_loss: 0.5827 - val_accuracy: 0.6174
Epoch 123/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5511 - accuracy: 0.6998 - val_loss: 0.5823 - val_accuracy: 0.6174
Epoch 124/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5506 - accuracy: 0.7014 - val_loss: 0.5819 - val_accuracy: 0.6174
Epoch 125/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5502 - accuracy: 0.7014 - val_loss: 0.5815 - val_accuracy: 0.6174
Epoch 126/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5498 - accuracy: 0.7029 - val_loss: 0.5811 - val_accuracy: 0.6174
Epoch 127/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5494 - accuracy: 0.7029 - val_loss: 0.5807 - val_accuracy: 0.6261
Epoch 128/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5490 - accuracy: 0.7029 - val_loss: 0.5803 - val_accuracy: 0.6261
Epoch 129/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5486 - accuracy: 0.7060 - val_loss: 0.5799 - val_accuracy: 0.6261
Epoch 130/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5482 - accuracy: 0.7060 - val_loss: 0.5795 - val_accuracy: 0.6261
Epoch 131/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5478 - accuracy: 0.7060 - val_loss: 0.5792 - val_accuracy: 0.6261
Epoch 132/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5474 - accuracy: 0.7060 - val_loss: 0.5788 - val_accuracy: 0.6261
Epoch 133/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5470 - accuracy: 0.7060 - val_loss: 0.5784 - val_accuracy: 0.6174
Epoch 134/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5467 - accuracy: 0.7060 - val_loss: 0.5781 - val_accuracy: 0.6174
Epoch 135/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5463 - accuracy: 0.7075 - val_loss: 0.5777 - val_accuracy: 0.6174
Epoch 136/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5459 - accuracy: 0.7075 - val_loss: 0.5774 - val_accuracy: 0.6174
Epoch 137/400
21/21 [==============================] - 0s 2ms/step - loss: 0.5456 - accuracy: 0.7075 - val_loss: 0.5770 - val_accuracy: 0.6174
Epoch 138/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5452 - accuracy: 0.7075 - val_loss: 0.5767 - val_accuracy: 0.6174
Epoch 139/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5448 - accuracy: 0.7075 - val_loss: 0.5763 - val_accuracy: 0.6174
Epoch 140/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5445 - accuracy: 0.7075 - val_loss: 0.5760 - val_accuracy: 0.6174
Epoch 141/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5441 - accuracy: 0.7121 - val_loss: 0.5756 - val_accuracy: 0.6174
Epoch 142/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5438 - accuracy: 0.7106 - val_loss: 0.5753 - val_accuracy: 0.6174
Epoch 143/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5434 - accuracy: 0.7106 - val_loss: 0.5750 - val_accuracy: 0.6174
Epoch 144/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5431 - accuracy: 0.7121 - val_loss: 0.5746 - val_accuracy: 0.6174
Epoch 145/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5427 - accuracy: 0.7121 - val_loss: 0.5743 - val_accuracy: 0.6174
Epoch 146/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5424 - accuracy: 0.7121 - val_loss: 0.5740 - val_accuracy: 0.6174
Epoch 147/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5421 - accuracy: 0.7121 - val_loss: 0.5736 - val_accuracy: 0.6087
Epoch 148/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5418 - accuracy: 0.7121 - val_loss: 0.5733 - val_accuracy: 0.6087
Epoch 149/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5415 - accuracy: 0.7136 - val_loss: 0.5730 - val_accuracy: 0.6087
Epoch 150/400
21/21 [==============================] - 0s 2ms/step - loss: 0.5411 - accuracy: 0.7152 - val_loss: 0.5727 - val_accuracy: 0.6087
Epoch 151/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5408 - accuracy: 0.7152 - val_loss: 0.5724 - val_accuracy: 0.6087
Epoch 152/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5405 - accuracy: 0.7152 - val_loss: 0.5720 - val_accuracy: 0.6087
Epoch 153/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5402 - accuracy: 0.7152 - val_loss: 0.5717 - val_accuracy: 0.6087
Epoch 154/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5399 - accuracy: 0.7136 - val_loss: 0.5714 - val_accuracy: 0.6087
Epoch 155/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5396 - accuracy: 0.7167 - val_loss: 0.5711 - val_accuracy: 0.6087
Epoch 156/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5393 - accuracy: 0.7167 - val_loss: 0.5708 - val_accuracy: 0.6087
Epoch 157/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5390 - accuracy: 0.7167 - val_loss: 0.5705 - val_accuracy: 0.6087
Epoch 158/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5386 - accuracy: 0.7182 - val_loss: 0.5702 - val_accuracy: 0.6087
Epoch 159/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5383 - accuracy: 0.7182 - val_loss: 0.5699 - val_accuracy: 0.6087
Epoch 160/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5380 - accuracy: 0.7182 - val_loss: 0.5696 - val_accuracy: 0.6087
Epoch 161/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5377 - accuracy: 0.7182 - val_loss: 0.5693 - val_accuracy: 0.6087
Epoch 162/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5374 - accuracy: 0.7198 - val_loss: 0.5690 - val_accuracy: 0.6087
Epoch 163/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5371 - accuracy: 0.7182 - val_loss: 0.5687 - val_accuracy: 0.6087
Epoch 164/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5368 - accuracy: 0.7198 - val_loss: 0.5684 - val_accuracy: 0.6087
Epoch 165/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5365 - accuracy: 0.7198 - val_loss: 0.5681 - val_accuracy: 0.6087
Epoch 166/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5362 - accuracy: 0.7198 - val_loss: 0.5678 - val_accuracy: 0.6087
Epoch 167/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5360 - accuracy: 0.7198 - val_loss: 0.5675 - val_accuracy: 0.6087
Epoch 168/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5357 - accuracy: 0.7198 - val_loss: 0.5672 - val_accuracy: 0.6087
Epoch 169/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5354 - accuracy: 0.7198 - val_loss: 0.5670 - val_accuracy: 0.6087
Epoch 170/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5351 - accuracy: 0.7198 - val_loss: 0.5667 - val_accuracy: 0.6087
Epoch 171/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5348 - accuracy: 0.7198 - val_loss: 0.5664 - val_accuracy: 0.6087
Epoch 172/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5345 - accuracy: 0.7198 - val_loss: 0.5661 - val_accuracy: 0.6087
Epoch 173/400
21/21 [==============================] - 0s 2ms/step - loss: 0.5343 - accuracy: 0.7198 - val_loss: 0.5658 - val_accuracy: 0.6174
Epoch 174/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5340 - accuracy: 0.7228 - val_loss: 0.5656 - val_accuracy: 0.6174
Epoch 175/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5337 - accuracy: 0.7228 - val_loss: 0.5653 - val_accuracy: 0.6174
Epoch 176/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5334 - accuracy: 0.7228 - val_loss: 0.5650 - val_accuracy: 0.6174
Epoch 177/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5332 - accuracy: 0.7228 - val_loss: 0.5647 - val_accuracy: 0.6174
Epoch 178/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5329 - accuracy: 0.7243 - val_loss: 0.5644 - val_accuracy: 0.6174
Epoch 179/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5326 - accuracy: 0.7243 - val_loss: 0.5641 - val_accuracy: 0.6261
Epoch 180/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5323 - accuracy: 0.7243 - val_loss: 0.5639 - val_accuracy: 0.6261
Epoch 181/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5321 - accuracy: 0.7243 - val_loss: 0.5636 - val_accuracy: 0.6261
Epoch 182/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5318 - accuracy: 0.7259 - val_loss: 0.5633 - val_accuracy: 0.6261
Epoch 183/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5316 - accuracy: 0.7259 - val_loss: 0.5630 - val_accuracy: 0.6261
Epoch 184/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5313 - accuracy: 0.7274 - val_loss: 0.5628 - val_accuracy: 0.6261
Epoch 185/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5310 - accuracy: 0.7289 - val_loss: 0.5625 - val_accuracy: 0.6261
Epoch 186/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5308 - accuracy: 0.7289 - val_loss: 0.5622 - val_accuracy: 0.6261
Epoch 187/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5305 - accuracy: 0.7305 - val_loss: 0.5620 - val_accuracy: 0.6261
Epoch 188/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5303 - accuracy: 0.7305 - val_loss: 0.5617 - val_accuracy: 0.6261
Epoch 189/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5300 - accuracy: 0.7305 - val_loss: 0.5614 - val_accuracy: 0.6261
Epoch 190/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5298 - accuracy: 0.7305 - val_loss: 0.5612 - val_accuracy: 0.6261
Epoch 191/400
21/21 [==============================] - 0s 2ms/step - loss: 0.5295 - accuracy: 0.7289 - val_loss: 0.5609 - val_accuracy: 0.6261
Epoch 192/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5293 - accuracy: 0.7289 - val_loss: 0.5606 - val_accuracy: 0.6348
Epoch 193/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5290 - accuracy: 0.7289 - val_loss: 0.5604 - val_accuracy: 0.6348
Epoch 194/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5288 - accuracy: 0.7305 - val_loss: 0.5601 - val_accuracy: 0.6348
Epoch 195/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5286 - accuracy: 0.7289 - val_loss: 0.5599 - val_accuracy: 0.6348
Epoch 196/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5283 - accuracy: 0.7305 - val_loss: 0.5596 - val_accuracy: 0.6348
Epoch 197/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5281 - accuracy: 0.7320 - val_loss: 0.5593 - val_accuracy: 0.6435
Epoch 198/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5278 - accuracy: 0.7320 - val_loss: 0.5591 - val_accuracy: 0.6435
Epoch 199/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5276 - accuracy: 0.7320 - val_loss: 0.5588 - val_accuracy: 0.6435
Epoch 200/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5273 - accuracy: 0.7320 - val_loss: 0.5585 - val_accuracy: 0.6435
Epoch 201/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5271 - accuracy: 0.7320 - val_loss: 0.5583 - val_accuracy: 0.6435
Epoch 202/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5269 - accuracy: 0.7320 - val_loss: 0.5580 - val_accuracy: 0.6435
Epoch 203/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5266 - accuracy: 0.7320 - val_loss: 0.5578 - val_accuracy: 0.6435
Epoch 204/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5264 - accuracy: 0.7335 - val_loss: 0.5575 - val_accuracy: 0.6435
Epoch 205/400
21/21 [==============================] - 0s 2ms/step - loss: 0.5262 - accuracy: 0.7335 - val_loss: 0.5573 - val_accuracy: 0.6435
Epoch 206/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5260 - accuracy: 0.7335 - val_loss: 0.5570 - val_accuracy: 0.6609
Epoch 207/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5257 - accuracy: 0.7335 - val_loss: 0.5567 - val_accuracy: 0.6522
Epoch 208/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5255 - accuracy: 0.7335 - val_loss: 0.5565 - val_accuracy: 0.6522
Epoch 209/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5253 - accuracy: 0.7335 - val_loss: 0.5563 - val_accuracy: 0.6522
Epoch 210/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5251 - accuracy: 0.7335 - val_loss: 0.5560 - val_accuracy: 0.6522
Epoch 211/400
21/21 [==============================] - 0s 2ms/step - loss: 0.5249 - accuracy: 0.7335 - val_loss: 0.5558 - val_accuracy: 0.6522
Epoch 212/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5247 - accuracy: 0.7335 - val_loss: 0.5556 - val_accuracy: 0.6522
Epoch 213/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5245 - accuracy: 0.7335 - val_loss: 0.5553 - val_accuracy: 0.6522
Epoch 214/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5242 - accuracy: 0.7335 - val_loss: 0.5551 - val_accuracy: 0.6522
Epoch 215/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5240 - accuracy: 0.7335 - val_loss: 0.5548 - val_accuracy: 0.6522
Epoch 216/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5238 - accuracy: 0.7335 - val_loss: 0.5546 - val_accuracy: 0.6522
Epoch 217/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5236 - accuracy: 0.7335 - val_loss: 0.5543 - val_accuracy: 0.6522
Epoch 218/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5234 - accuracy: 0.7351 - val_loss: 0.5541 - val_accuracy: 0.6522
Epoch 219/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5232 - accuracy: 0.7366 - val_loss: 0.5538 - val_accuracy: 0.6522
Epoch 220/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5230 - accuracy: 0.7381 - val_loss: 0.5535 - val_accuracy: 0.6522
Epoch 221/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5228 - accuracy: 0.7381 - val_loss: 0.5533 - val_accuracy: 0.6522
Epoch 222/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5226 - accuracy: 0.7381 - val_loss: 0.5531 - val_accuracy: 0.6522
Epoch 223/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5224 - accuracy: 0.7397 - val_loss: 0.5528 - val_accuracy: 0.6522
Epoch 224/400
21/21 [==============================] - 0s 2ms/step - loss: 0.5222 - accuracy: 0.7381 - val_loss: 0.5525 - val_accuracy: 0.6522
Epoch 225/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5220 - accuracy: 0.7381 - val_loss: 0.5523 - val_accuracy: 0.6522
Epoch 226/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5218 - accuracy: 0.7381 - val_loss: 0.5520 - val_accuracy: 0.6522
Epoch 227/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5216 - accuracy: 0.7381 - val_loss: 0.5518 - val_accuracy: 0.6609
Epoch 228/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5214 - accuracy: 0.7381 - val_loss: 0.5515 - val_accuracy: 0.6609
Epoch 229/400
21/21 [==============================] - 0s 2ms/step - loss: 0.5212 - accuracy: 0.7381 - val_loss: 0.5512 - val_accuracy: 0.6609
Epoch 230/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5210 - accuracy: 0.7381 - val_loss: 0.5510 - val_accuracy: 0.6609
Epoch 231/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5208 - accuracy: 0.7381 - val_loss: 0.5507 - val_accuracy: 0.6609
Epoch 232/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5206 - accuracy: 0.7381 - val_loss: 0.5505 - val_accuracy: 0.6609
Epoch 233/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5205 - accuracy: 0.7381 - val_loss: 0.5502 - val_accuracy: 0.6609
Epoch 234/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5203 - accuracy: 0.7381 - val_loss: 0.5499 - val_accuracy: 0.6609
Epoch 235/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5201 - accuracy: 0.7381 - val_loss: 0.5497 - val_accuracy: 0.6609
Epoch 236/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5199 - accuracy: 0.7366 - val_loss: 0.5495 - val_accuracy: 0.6609
Epoch 237/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5197 - accuracy: 0.7366 - val_loss: 0.5492 - val_accuracy: 0.6609
Epoch 238/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5195 - accuracy: 0.7366 - val_loss: 0.5489 - val_accuracy: 0.6609
Epoch 239/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5193 - accuracy: 0.7366 - val_loss: 0.5487 - val_accuracy: 0.6609
Epoch 240/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5191 - accuracy: 0.7366 - val_loss: 0.5484 - val_accuracy: 0.6522
Epoch 241/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5189 - accuracy: 0.7366 - val_loss: 0.5482 - val_accuracy: 0.6522
Epoch 242/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5187 - accuracy: 0.7366 - val_loss: 0.5479 - val_accuracy: 0.6522
Epoch 243/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5185 - accuracy: 0.7366 - val_loss: 0.5477 - val_accuracy: 0.6522
Epoch 244/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5183 - accuracy: 0.7351 - val_loss: 0.5474 - val_accuracy: 0.6522
Epoch 245/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5181 - accuracy: 0.7351 - val_loss: 0.5472 - val_accuracy: 0.6609
Epoch 246/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5180 - accuracy: 0.7366 - val_loss: 0.5469 - val_accuracy: 0.6609
Epoch 247/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5178 - accuracy: 0.7381 - val_loss: 0.5467 - val_accuracy: 0.6609
Epoch 248/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5176 - accuracy: 0.7381 - val_loss: 0.5465 - val_accuracy: 0.6609
Epoch 249/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5174 - accuracy: 0.7381 - val_loss: 0.5462 - val_accuracy: 0.6609
Epoch 250/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5172 - accuracy: 0.7381 - val_loss: 0.5460 - val_accuracy: 0.6609
Epoch 251/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5171 - accuracy: 0.7366 - val_loss: 0.5457 - val_accuracy: 0.6609
Epoch 252/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5169 - accuracy: 0.7366 - val_loss: 0.5455 - val_accuracy: 0.6609
Epoch 253/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5167 - accuracy: 0.7366 - val_loss: 0.5452 - val_accuracy: 0.6609
Epoch 254/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5165 - accuracy: 0.7366 - val_loss: 0.5450 - val_accuracy: 0.6609
Epoch 255/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5163 - accuracy: 0.7366 - val_loss: 0.5448 - val_accuracy: 0.6609
Epoch 256/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5162 - accuracy: 0.7366 - val_loss: 0.5445 - val_accuracy: 0.6609
Epoch 257/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5160 - accuracy: 0.7366 - val_loss: 0.5443 - val_accuracy: 0.6609
Epoch 258/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5158 - accuracy: 0.7366 - val_loss: 0.5440 - val_accuracy: 0.6609
Epoch 259/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5156 - accuracy: 0.7366 - val_loss: 0.5438 - val_accuracy: 0.6609
Epoch 260/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5155 - accuracy: 0.7366 - val_loss: 0.5435 - val_accuracy: 0.6609
Epoch 261/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5153 - accuracy: 0.7366 - val_loss: 0.5433 - val_accuracy: 0.6609
Epoch 262/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5151 - accuracy: 0.7366 - val_loss: 0.5431 - val_accuracy: 0.6609
Epoch 263/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5149 - accuracy: 0.7366 - val_loss: 0.5428 - val_accuracy: 0.6609
Epoch 264/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5148 - accuracy: 0.7366 - val_loss: 0.5426 - val_accuracy: 0.6609
Epoch 265/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5146 - accuracy: 0.7366 - val_loss: 0.5423 - val_accuracy: 0.6609
Epoch 266/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5144 - accuracy: 0.7366 - val_loss: 0.5421 - val_accuracy: 0.6609
Epoch 267/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5143 - accuracy: 0.7366 - val_loss: 0.5419 - val_accuracy: 0.6609
Epoch 268/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5141 - accuracy: 0.7366 - val_loss: 0.5416 - val_accuracy: 0.6609
Epoch 269/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5139 - accuracy: 0.7366 - val_loss: 0.5414 - val_accuracy: 0.6609
Epoch 270/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5138 - accuracy: 0.7366 - val_loss: 0.5412 - val_accuracy: 0.6609
Epoch 271/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5136 - accuracy: 0.7381 - val_loss: 0.5409 - val_accuracy: 0.6609
Epoch 272/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5135 - accuracy: 0.7381 - val_loss: 0.5407 - val_accuracy: 0.6609
Epoch 273/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5133 - accuracy: 0.7381 - val_loss: 0.5405 - val_accuracy: 0.6609
Epoch 274/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5132 - accuracy: 0.7381 - val_loss: 0.5403 - val_accuracy: 0.6609
Epoch 275/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5130 - accuracy: 0.7381 - val_loss: 0.5400 - val_accuracy: 0.6609
Epoch 276/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5129 - accuracy: 0.7381 - val_loss: 0.5398 - val_accuracy: 0.6609
Epoch 277/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5127 - accuracy: 0.7381 - val_loss: 0.5396 - val_accuracy: 0.6609
Epoch 278/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5126 - accuracy: 0.7381 - val_loss: 0.5394 - val_accuracy: 0.6609
Epoch 279/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5124 - accuracy: 0.7381 - val_loss: 0.5392 - val_accuracy: 0.6609
Epoch 280/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5123 - accuracy: 0.7381 - val_loss: 0.5390 - val_accuracy: 0.6609
Epoch 281/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5121 - accuracy: 0.7381 - val_loss: 0.5387 - val_accuracy: 0.6609
Epoch 282/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5120 - accuracy: 0.7381 - val_loss: 0.5385 - val_accuracy: 0.6609
Epoch 283/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5118 - accuracy: 0.7397 - val_loss: 0.5383 - val_accuracy: 0.6609
Epoch 284/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5117 - accuracy: 0.7397 - val_loss: 0.5381 - val_accuracy: 0.6609
Epoch 285/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5115 - accuracy: 0.7397 - val_loss: 0.5379 - val_accuracy: 0.6609
Epoch 286/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5114 - accuracy: 0.7397 - val_loss: 0.5377 - val_accuracy: 0.6609
Epoch 287/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5112 - accuracy: 0.7397 - val_loss: 0.5374 - val_accuracy: 0.6609
Epoch 288/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5111 - accuracy: 0.7397 - val_loss: 0.5372 - val_accuracy: 0.6609
Epoch 289/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5110 - accuracy: 0.7412 - val_loss: 0.5370 - val_accuracy: 0.6609
Epoch 290/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5108 - accuracy: 0.7412 - val_loss: 0.5368 - val_accuracy: 0.6609
Epoch 291/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5107 - accuracy: 0.7412 - val_loss: 0.5366 - val_accuracy: 0.6609
Epoch 292/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5105 - accuracy: 0.7412 - val_loss: 0.5364 - val_accuracy: 0.6609
Epoch 293/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5104 - accuracy: 0.7427 - val_loss: 0.5362 - val_accuracy: 0.6609
Epoch 294/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5102 - accuracy: 0.7443 - val_loss: 0.5360 - val_accuracy: 0.6609
Epoch 295/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5101 - accuracy: 0.7443 - val_loss: 0.5358 - val_accuracy: 0.6609
Epoch 296/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5100 - accuracy: 0.7443 - val_loss: 0.5356 - val_accuracy: 0.6696
Epoch 297/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5098 - accuracy: 0.7443 - val_loss: 0.5354 - val_accuracy: 0.6696
Epoch 298/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5097 - accuracy: 0.7473 - val_loss: 0.5352 - val_accuracy: 0.6696
Epoch 299/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5096 - accuracy: 0.7473 - val_loss: 0.5350 - val_accuracy: 0.6696
Epoch 300/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5094 - accuracy: 0.7473 - val_loss: 0.5349 - val_accuracy: 0.6696
Epoch 301/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5093 - accuracy: 0.7473 - val_loss: 0.5347 - val_accuracy: 0.6696
Epoch 302/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5091 - accuracy: 0.7489 - val_loss: 0.5345 - val_accuracy: 0.6696
Epoch 303/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5090 - accuracy: 0.7504 - val_loss: 0.5343 - val_accuracy: 0.6696
Epoch 304/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5089 - accuracy: 0.7504 - val_loss: 0.5341 - val_accuracy: 0.6696
Epoch 305/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5087 - accuracy: 0.7504 - val_loss: 0.5339 - val_accuracy: 0.6696
Epoch 306/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5086 - accuracy: 0.7504 - val_loss: 0.5337 - val_accuracy: 0.6783
Epoch 307/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5084 - accuracy: 0.7504 - val_loss: 0.5335 - val_accuracy: 0.6783
Epoch 308/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5083 - accuracy: 0.7504 - val_loss: 0.5333 - val_accuracy: 0.6783
Epoch 309/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5082 - accuracy: 0.7504 - val_loss: 0.5332 - val_accuracy: 0.6783
Epoch 310/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5081 - accuracy: 0.7504 - val_loss: 0.5330 - val_accuracy: 0.6783
Epoch 311/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5079 - accuracy: 0.7504 - val_loss: 0.5328 - val_accuracy: 0.6783
Epoch 312/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5078 - accuracy: 0.7504 - val_loss: 0.5326 - val_accuracy: 0.6783
Epoch 313/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5077 - accuracy: 0.7504 - val_loss: 0.5325 - val_accuracy: 0.6783
Epoch 314/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5075 - accuracy: 0.7504 - val_loss: 0.5323 - val_accuracy: 0.6783
Epoch 315/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5074 - accuracy: 0.7504 - val_loss: 0.5321 - val_accuracy: 0.6783
Epoch 316/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5073 - accuracy: 0.7504 - val_loss: 0.5319 - val_accuracy: 0.6783
Epoch 317/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5072 - accuracy: 0.7504 - val_loss: 0.5318 - val_accuracy: 0.6783
Epoch 318/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5070 - accuracy: 0.7504 - val_loss: 0.5316 - val_accuracy: 0.6783
Epoch 319/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5069 - accuracy: 0.7504 - val_loss: 0.5314 - val_accuracy: 0.6783
Epoch 320/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5068 - accuracy: 0.7504 - val_loss: 0.5312 - val_accuracy: 0.6783
Epoch 321/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5067 - accuracy: 0.7504 - val_loss: 0.5310 - val_accuracy: 0.6783
Epoch 322/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5065 - accuracy: 0.7504 - val_loss: 0.5309 - val_accuracy: 0.6783
Epoch 323/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5064 - accuracy: 0.7504 - val_loss: 0.5307 - val_accuracy: 0.6783
Epoch 324/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5063 - accuracy: 0.7504 - val_loss: 0.5305 - val_accuracy: 0.6783
Epoch 325/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5062 - accuracy: 0.7504 - val_loss: 0.5303 - val_accuracy: 0.6783
Epoch 326/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5060 - accuracy: 0.7504 - val_loss: 0.5302 - val_accuracy: 0.6783
Epoch 327/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5059 - accuracy: 0.7504 - val_loss: 0.5300 - val_accuracy: 0.6783
Epoch 328/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5058 - accuracy: 0.7504 - val_loss: 0.5298 - val_accuracy: 0.6783
Epoch 329/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5057 - accuracy: 0.7504 - val_loss: 0.5296 - val_accuracy: 0.6783
Epoch 330/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5055 - accuracy: 0.7504 - val_loss: 0.5295 - val_accuracy: 0.6783
Epoch 331/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5054 - accuracy: 0.7504 - val_loss: 0.5293 - val_accuracy: 0.6783
Epoch 332/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5053 - accuracy: 0.7504 - val_loss: 0.5291 - val_accuracy: 0.6783
Epoch 333/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5052 - accuracy: 0.7504 - val_loss: 0.5290 - val_accuracy: 0.6783
Epoch 334/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5051 - accuracy: 0.7504 - val_loss: 0.5288 - val_accuracy: 0.6783
Epoch 335/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5050 - accuracy: 0.7504 - val_loss: 0.5286 - val_accuracy: 0.6870
Epoch 336/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5048 - accuracy: 0.7504 - val_loss: 0.5285 - val_accuracy: 0.6870
Epoch 337/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5047 - accuracy: 0.7504 - val_loss: 0.5283 - val_accuracy: 0.6870
Epoch 338/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5046 - accuracy: 0.7489 - val_loss: 0.5281 - val_accuracy: 0.6870
Epoch 339/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5045 - accuracy: 0.7504 - val_loss: 0.5280 - val_accuracy: 0.6870
Epoch 340/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5044 - accuracy: 0.7504 - val_loss: 0.5278 - val_accuracy: 0.6870
Epoch 341/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5042 - accuracy: 0.7504 - val_loss: 0.5277 - val_accuracy: 0.6870
Epoch 342/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5041 - accuracy: 0.7504 - val_loss: 0.5275 - val_accuracy: 0.6870
Epoch 343/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5040 - accuracy: 0.7519 - val_loss: 0.5273 - val_accuracy: 0.6870
Epoch 344/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5039 - accuracy: 0.7519 - val_loss: 0.5272 - val_accuracy: 0.6870
Epoch 345/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5038 - accuracy: 0.7534 - val_loss: 0.5270 - val_accuracy: 0.6870
Epoch 346/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5037 - accuracy: 0.7534 - val_loss: 0.5269 - val_accuracy: 0.6870
Epoch 347/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5035 - accuracy: 0.7534 - val_loss: 0.5267 - val_accuracy: 0.6870
Epoch 348/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5034 - accuracy: 0.7534 - val_loss: 0.5266 - val_accuracy: 0.6870
Epoch 349/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5033 - accuracy: 0.7534 - val_loss: 0.5264 - val_accuracy: 0.6870
Epoch 350/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5032 - accuracy: 0.7534 - val_loss: 0.5262 - val_accuracy: 0.6870
Epoch 351/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5031 - accuracy: 0.7534 - val_loss: 0.5261 - val_accuracy: 0.6870
Epoch 352/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5030 - accuracy: 0.7534 - val_loss: 0.5259 - val_accuracy: 0.6870
Epoch 353/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5029 - accuracy: 0.7534 - val_loss: 0.5258 - val_accuracy: 0.6870
Epoch 354/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5028 - accuracy: 0.7534 - val_loss: 0.5256 - val_accuracy: 0.6870
Epoch 355/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5027 - accuracy: 0.7550 - val_loss: 0.5255 - val_accuracy: 0.6870
Epoch 356/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5026 - accuracy: 0.7550 - val_loss: 0.5253 - val_accuracy: 0.6870
Epoch 357/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5025 - accuracy: 0.7550 - val_loss: 0.5252 - val_accuracy: 0.6870
Epoch 358/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5024 - accuracy: 0.7534 - val_loss: 0.5250 - val_accuracy: 0.6870
Epoch 359/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5022 - accuracy: 0.7550 - val_loss: 0.5249 - val_accuracy: 0.6870
Epoch 360/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5021 - accuracy: 0.7550 - val_loss: 0.5247 - val_accuracy: 0.6870
Epoch 361/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5020 - accuracy: 0.7550 - val_loss: 0.5246 - val_accuracy: 0.6870
Epoch 362/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5019 - accuracy: 0.7565 - val_loss: 0.5244 - val_accuracy: 0.6870
Epoch 363/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5018 - accuracy: 0.7565 - val_loss: 0.5243 - val_accuracy: 0.6870
Epoch 364/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5017 - accuracy: 0.7580 - val_loss: 0.5241 - val_accuracy: 0.6870
Epoch 365/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5016 - accuracy: 0.7565 - val_loss: 0.5240 - val_accuracy: 0.6870
Epoch 366/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5015 - accuracy: 0.7565 - val_loss: 0.5238 - val_accuracy: 0.6870
Epoch 367/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5014 - accuracy: 0.7550 - val_loss: 0.5237 - val_accuracy: 0.6870
Epoch 368/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5013 - accuracy: 0.7550 - val_loss: 0.5236 - val_accuracy: 0.6870
Epoch 369/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5012 - accuracy: 0.7550 - val_loss: 0.5234 - val_accuracy: 0.6870
Epoch 370/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5011 - accuracy: 0.7550 - val_loss: 0.5233 - val_accuracy: 0.6870
Epoch 371/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5010 - accuracy: 0.7550 - val_loss: 0.5231 - val_accuracy: 0.6870
Epoch 372/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5009 - accuracy: 0.7550 - val_loss: 0.5230 - val_accuracy: 0.6870
Epoch 373/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5008 - accuracy: 0.7550 - val_loss: 0.5228 - val_accuracy: 0.6870
Epoch 374/400
21/21 [==============================] - 0s 4ms/step - loss: 0.5007 - accuracy: 0.7550 - val_loss: 0.5227 - val_accuracy: 0.6870
Epoch 375/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5006 - accuracy: 0.7550 - val_loss: 0.5225 - val_accuracy: 0.6870
Epoch 376/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5005 - accuracy: 0.7550 - val_loss: 0.5223 - val_accuracy: 0.6870
Epoch 377/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5004 - accuracy: 0.7550 - val_loss: 0.5222 - val_accuracy: 0.6870
Epoch 378/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5003 - accuracy: 0.7550 - val_loss: 0.5220 - val_accuracy: 0.6870
Epoch 379/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5002 - accuracy: 0.7534 - val_loss: 0.5219 - val_accuracy: 0.6870
Epoch 380/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5001 - accuracy: 0.7534 - val_loss: 0.5217 - val_accuracy: 0.6870
Epoch 381/400
21/21 [==============================] - 0s 3ms/step - loss: 0.5000 - accuracy: 0.7534 - val_loss: 0.5216 - val_accuracy: 0.6870
Epoch 382/400
21/21 [==============================] - 0s 3ms/step - loss: 0.4999 - accuracy: 0.7534 - val_loss: 0.5214 - val_accuracy: 0.6870
Epoch 383/400
21/21 [==============================] - 0s 4ms/step - loss: 0.4998 - accuracy: 0.7534 - val_loss: 0.5213 - val_accuracy: 0.6870
Epoch 384/400
21/21 [==============================] - 0s 3ms/step - loss: 0.4997 - accuracy: 0.7534 - val_loss: 0.5211 - val_accuracy: 0.6870
Epoch 385/400
21/21 [==============================] - 0s 3ms/step - loss: 0.4996 - accuracy: 0.7534 - val_loss: 0.5210 - val_accuracy: 0.6870
Epoch 386/400
21/21 [==============================] - 0s 4ms/step - loss: 0.4995 - accuracy: 0.7534 - val_loss: 0.5208 - val_accuracy: 0.6870
Epoch 387/400
21/21 [==============================] - 0s 3ms/step - loss: 0.4994 - accuracy: 0.7534 - val_loss: 0.5207 - val_accuracy: 0.6870
Epoch 388/400
21/21 [==============================] - 0s 4ms/step - loss: 0.4993 - accuracy: 0.7534 - val_loss: 0.5205 - val_accuracy: 0.6870
Epoch 389/400
21/21 [==============================] - 0s 3ms/step - loss: 0.4992 - accuracy: 0.7550 - val_loss: 0.5204 - val_accuracy: 0.6870
Epoch 390/400
21/21 [==============================] - 0s 3ms/step - loss: 0.4991 - accuracy: 0.7534 - val_loss: 0.5203 - val_accuracy: 0.6870
Epoch 391/400
21/21 [==============================] - 0s 3ms/step - loss: 0.4990 - accuracy: 0.7534 - val_loss: 0.5201 - val_accuracy: 0.6870
Epoch 392/400
21/21 [==============================] - 0s 3ms/step - loss: 0.4989 - accuracy: 0.7534 - val_loss: 0.5200 - val_accuracy: 0.6870
Epoch 393/400
21/21 [==============================] - 0s 3ms/step - loss: 0.4988 - accuracy: 0.7534 - val_loss: 0.5199 - val_accuracy: 0.6870
Epoch 394/400
21/21 [==============================] - 0s 3ms/step - loss: 0.4988 - accuracy: 0.7534 - val_loss: 0.5198 - val_accuracy: 0.6870
Epoch 395/400
21/21 [==============================] - 0s 3ms/step - loss: 0.4987 - accuracy: 0.7534 - val_loss: 0.5196 - val_accuracy: 0.6870
Epoch 396/400
21/21 [==============================] - 0s 3ms/step - loss: 0.4986 - accuracy: 0.7534 - val_loss: 0.5195 - val_accuracy: 0.6870
Epoch 397/400
21/21 [==============================] - 0s 4ms/step - loss: 0.4985 - accuracy: 0.7534 - val_loss: 0.5194 - val_accuracy: 0.6870
Epoch 398/400
21/21 [==============================] - 0s 3ms/step - loss: 0.4984 - accuracy: 0.7534 - val_loss: 0.5193 - val_accuracy: 0.6870
Epoch 399/400
21/21 [==============================] - 0s 3ms/step - loss: 0.4983 - accuracy: 0.7534 - val_loss: 0.5191 - val_accuracy: 0.6870
Epoch 400/400
21/21 [==============================] - 0s 4ms/step - loss: 0.4982 - accuracy: 0.7534 - val_loss: 0.5190 - val_accuracy: 0.6870
Elapsed time => 0:00:30.603552
In [ ]:
model.evaluate(x_test, y_test) # 또는 pred = model.predict()
4/4 [==============================] - 0s 3ms/step - loss: 0.5190 - accuracy: 0.6870
Out[ ]:
[0.5190069675445557, 0.686956524848938]
In [ ]:
plt.title('loss trend')
plt.xlabel('epochs')
plt.ylabel('loss')
plt.grid()
plt.plot(hist.history['loss'], label = 'train loss')
plt.plot(hist.history['val_loss'], label = 'validation loss')
plt.legend(loc = 'best')
plt.show()

In [ ]:
plt.title('accuracy trend')
plt.xlabel('epochs')
plt.ylabel('loss')
plt.grid()
plt.plot(hist.history['accuracy'], label = 'train accuracy')
plt.plot(hist.history['val_accuracy'], label = 'validation accuracy')
plt.legend(loc = 'best')
plt.show()

In [ ]:
In [ ]:
캐글 당뇨병 데이터 분석
'AI > Computer Vision' 카테고리의 다른 글
01_NN_MNIST_example_onehot (0) | 2022.08.01 |
---|---|
00_Introduction_to_CNN (0) | 2022.08.01 |
03_pandas quick review (0) | 2022.08.01 |
02_TF_2_x_2_LogisticRegression_MultiClassification_Example (0) | 2022.08.01 |
01_TF_2_x_2_LogisticRegression_Exercise_validation_0_5 (0) | 2022.08.01 |
Comments